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ABSTRACT

We consider the problem of image denoising with unknown
noise distribution. We propose a hybrid approach where
model-based space-variant total variation (TV) regularization
is used for denoising with hyperparameters estimated locally
using a Convolutional Neural Network (CNN) with a simple
and light architecture. The special choice of the weighted TV
prior allows for the use of a limited learning set, while the
use of the proposed CNN approach allows for local parame-
ter estimation independently of the type of noise in the data.
The obtained results show that the proposed hybrid approach
takes benefit from both the prior information encoded in the
choice of the regularization model and the versatility of the
CNN-based parameter estimation approach.

Index Terms— Image denoising, Total Variation, Convo-
lutional Neural Networks, Local hyperparameter estimation.

1. INTRODUCTION

Image restoration is a standard imaging inverse problem that
includes image denoising and image deconvolution, which is
classically addressed by optimizing a composite model de-
fined in terms of a prior or regularization term to smooth the
solution and a data fidelity or likelihood term taking into ac-
count the attachment with the given image data. A reference
approach in this field consists in combining the Total Varia-
tion (TV) prior promoting sparse image gradients with an ℓ2
data term, see [2]. These two terms are typically weighted
by a scalar hyperparameter to be estimated in order to obtain
good reconstruction and data consistency. Recently, some ap-
proaches to allow this parameter to vary locally (i.e. at each
pixel location) in order to take into account specific image
structures such as edges or texture, see, e.g. [1, 3]. To es-
timate such space-variant parameters an iterative algorithm
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alternating image optimization and parameter estimation is
used. These approaches necessitate the definition of a proper
noise model, which is usually considered as Gaussian.

Following their success in classification or object detec-
tion problems, convolutional neural networks (CNN) have
been also employed for image restoration. They offer an
optimization framework to solve inverse problems without
the use of a pre-defined model, thus avoiding model param-
eter estimation. In this framework, the model information is
learned from a huge collection of examples constructed with
corrupted images and associated denoised or deconvolved
images. Transfer learning can be applied to reduce its size,
but collecting a suitably large and representative learning set
is still challenging.

In this paper, we propose to combine a model-based ap-
proach with CNNs, so as to benefit from the prior information
of the model considered, while limiting the size of the learn-
ing set at the same time. As model parameters are locally
estimated by the CNN, the proposed approach is flexible as it
adapts also to possibly non-Gaussian noise distributions. Fur-
thermore, as only one scalar hyperparameter is learned at each
pixel, a light architecture for the CNN and a reduced learning
set can be considered.

2. SPACE-VARIANT TV DENOISING

Given a noisy vectorized image y ∈ RN , the standard formu-
lation of the image denoising problem reads:

find x s.t. y = T (x), (1)

where T : RN → RN is a possibly non-linear noise degrada-
tion operator whose definition depends on the noise statistics
assumed. In the case of additive noise degradation, problem
(1) takes the form y = x + n, where n ∈ Rn denotes the
random vector whose components are drawn by, for instance,
a Gaussian noise distribution of zero mean and given vari-
ance σ2, so that n ∼ N (0, σ2Id). More complicated, pos-
sibly non-linear noise degradation models can be considered
to model, e.g., signal-dependent Poisson and/or multiplicative
speckle noise.



Bayesian formulation. A standard approach for solving
(1) consists in considering the quantities into play in terms
of their probability density functions (p.d.f.) and looking for
solutions x∗ of the following maximum-likelihood problem:

x∗ ∈ argmax
x

p(x|y) = argmax
x

p(y|x)p(x)
p(y)

, (2)

by Bayes formula, where p(y|x) is the noise-likelihood func-
tion associated to the distribution of noise in the data, p(x) is
the so-called prior p.d.f. whose form depends on prior knowl-
edge on the solution and p(y) is a normalization constant.

A popular choice for p(x) which has become increas-
ingly popular over the last decades, consists in assuming that
p(x) = p(∥Dx∥) = L(0, αId) with α > 0, that is, for
all image pixels i =, 1 . . . , N the quantities ∥(Dx)i∥ are
i.i.d. drawn from a Laplace distribution with scale parame-
ter α. This choice, however, has been previously shown [3]
to be too rigid to adapt to the actual distribution of natural
image gradients. For this reason, a plethora of more tailored
approaches has been proposed, relying, e.g., on the design
of hyper-Laplacian distributions [4] or on non-stationary
Markov random fields [5, 3] have been proposed. In this lat-
ter case, the idea is to assume that at each pixel i = 1, . . . , N
the underlying prior p.d.f. parameters depend on the local
image content so that: p(x) = p(x;α) =

∏n
i=1 p(xi;αi),

where hyper-parameters α ∈ RN are now stored in a vector.
When assuming a Laplace prior on ∥Dx∥, this choice thus
corresponds to consider for all i = 1, . . . , N

p(∥(Dx)i∥;αi) = αi exp (−αi∥(Dx)i∥) , (3)

where αi > 0 is the local scale parameter.

MAP estimation and space-variant modelling. An analo-
gous formulation of problem (1) corresponds to perform stan-
dard Maximum A Posteriori (MAP) estimation in (2) by tak-
ing the negative logarithm and neglecting the normalization
constant p(y), thus obtaining:

x∗ ∈ argmin
x

− ln p(y|x)− ln p(x).

Assuming, for instance, that p(y|x) = N (0, σ2Id) and that
p(x) is chosen as in (3), standard calculations show that the
problem becomes:

argmin
x

µ

2
∥y − x∥2 + WTV(x) (HWTV-ℓ2)

where µ := 1/σ2 > 0 and WTV(x) =
∑N

i=1 αi∥(Dx)i∥ is
the space-variant version of TV which has been considered
in previous works (see, e.g., [1, 3]). By dividing both terms
above by µ, one can rewrite (HWTV-ℓ2) as:

argmin
x

1

2
∥y − x∥2 +

N∑
i=1

λi∥(Dx)i∥, (WTV-ℓ2)

where, for each i = 1, . . . , N the parameter λi := αi/µ now
depends now on both the hyperparameters associated to p(x)
and to p(y|x). Note, however, that differently from its space-
invariant version (where λi = λ = α/µ for all i), the model
in (WTV-ℓ2) is adaptive as the parameters λi can be adjusted
to describe local image content. Their choice is crucial for
obtaining a good denoising result as, locally, they balance the
effect of the regularisations against the one of the data term.

Starting from formulation (WTV-ℓ2), we propose in the
following a deep-learning strategy based on the use of CNNs
for estimating the vector λ ∈ RN from a given noisy ob-
servation y ∈ RN . Alternative strategies previously consid-
ered in the standard literature of statistical/variational prob-
lems in imaging, rather considered the parameter estimation
problem in the decoupled form (HWTV-ℓ2) and estimated the
parameters µ and α = (αi)i separately. For instance, in [1]
a hybrid strategy for estimating µ via the standard discrep-
ancy principle was combined with a maximum-likelihood ap-
proach for estimating the parameters α for model (HWTV-ℓ2)
by exploiting the non-stationary form (3). Note that in order
to provide suitable estimations of µ, this approach requires
the prior knowledge (or estimation) of the noise distribution
(Gaussian) and of its intensity value σ2, which may be limit-
ing in real-world applications.

From an optimization point of view, we solve problem
(WTV-ℓ2) by smoothing the WTV term with a parameter
0 < ε ≪ 1, thus considering for all i = 1, . . . , N the
smoothed quantities ∥(Dx)i∥ε =

√
(Dx)2i,1 + (Dx)2i,2 + ε,

where (Dx)i,1 and (Dx)i,2 denote the gradient components
along the horizontal and vertical direction, respectively. Upon
such smoothing, a numerical solution of (WTV-ℓ2) can be
computed by standard gradient descent.

3. PARAMETER ESTIMATION VIA CNN LEARNING

We consider a training set composed of image patches of size
32 × 32, see Section 4.1 for more details on the dataset em-
ployed. For each image patch ỹ ∈ R32×32, we design a
CNN with a light architecture to estimate an optimal param-
eter λ > 0. The network architecture is given in Figure 1
where the number of layers has been optimized w.r.t. to the
mean square error. It consists simply of a convolutional layer,
a max-pooling layer, a flattening layer and 2 dense layers.
By tuning the model hyper-parameters, the following choices
were made: batch size of 150 and a learning rate of 0.001.
Concerning the number of epochs, we used early stopping to
stop training once the model performance decreases on the
validation dataset. Note that we have only to train three lay-
ers, one convolutional layer and two dense layers. Besides,
the input matrix has a reduced dimension that is 32 × 32 in-
dependently of the initial image size. This is major advantage
compared to end-to-end denoising CNNs based on the initial
image as input.



Fig. 1: CNN architecture for the estimation of the optimal
parameter λj from a given image patch ỹj ∈ R32×32 ex-
tracted from the noisy image y. The estimated parameters
are collected on the λ-map λCNN containing at each pixel
j = 1, . . . , N the parameter λj .

Once the training is performed, for a new given noisy im-
age y ∈ RN , we extract image patches centered on each pixel
(yj)

D
j=1 of size 32 × 32 by sliding a window over the whole

image domain. The parameter estimation is then performed as
above on each patch yj ∈ R32×32, providing a value λj > 0
as an output. The values λj are then collected in the array
λCNN ∈ RN , where, note, the values λj around the image
boundary are computed by extrapolation. The estimation is
performed independently on each patch, which allows for a
parallel implementation. Having constructed the vector λCNN,
the denoising of the image y can thus be by solving (WTV-ℓ2)
using the estimated parameter map.

4. NUMERICAL RESULTS

4.1. Datasets construction

To develop a general model well-adapted to natural images
with different image contents, textures and corrupted with
different noise distributions, we considered a selection of 25
grayscale normalized images extracted from the Berkeley
Segmentation Dataset1. Ground-truth images were corrupted
with noise of different distributions (additive white Gaussian
with variance σ2 ∈ {0.02, 0.05, 0.07} speckle noise with
same variances and Poisson). For each of these images, we
extracted 32 × 32 image patches y ∈ R32×32 and compute
the scalar optimal parameters λ̂ > 0 by brute-force estima-
tion, i.e. we solve problem (WTV-ℓ2) for a range of constant
parameters λ ∈ [λmin, λmax], with λmin < λmax and select as λ̂
the value such that:

λ̂ ∈ argmax
λ∈[λmin,λmax]

SSIM(x(λ), x̃), (4)

1https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/

where x̃ is the ground-truth noise-free version of y.
To mitigate the intensity bias due to Poisson noise cor-

ruption, we enriched our dataset with the set of noisy images
with reverse intensities (i.e. negatives) along with the corre-
sponding estimated parameters. The final training dataset is
thus composed of K = 19200 patches of size 32× 32 paired
with the corresponding optimal value of the regularization pa-

rameter
{
(yj , λ̂j)

}K

j=1
.

4.2. Denoising results and comparisons

Patch

λBF 0.01 0.06 0.135
SSIM 0.68 0.73 0.57
λCNN 0.007 0.05 0.17
SSIM 0.68 0.71 0.56

Table 1: Comparisons between optimal estimated parameters
λBF and λCNN on exemplar image patches via (4) and via the
proposed CNN model, respectively.

In Table1, we compare the value λBF estimated as in
(4) with the value λCNN estimated by the CNN model for
three exemplar image patches. The first two patches are
corrupted with Gaussian noise with zero mean and variance
σ2 = 0.005. The first one contains textured details, while
the second one contains an extended homogeneous region.
The third patch has the same content as the second one,
but it is corrupted with Gaussian noise with lower variance
σ2 = 0.02. The two methods show comparable SSIM
values. Note also that, as expected, smaller regularization
is employed whenever textured details are present, while a
larger smoothing is estimated in the case of stronger noise.

In Figure 2 we report the results by applying the proposed
parameter estimation approach on the noisy image y in Figure
2a characterized by the presence of both homogeneous (e.g.
sky) and textured (e.g. skyscraper) regions and corrupted with
Gaussian noise of zero mean and variance σ2 = 0.01. We
compare in Figure 2b the denoising results obtained by us-
ing a standard TV-ℓ2 denoising model (i.e. (WTV-ℓ2) with a
space-invariant parameter λ estimated as in (4), in Figure 2c
the result obtained by applying the iterative approach consid-
ered in [1] for estimating in (HWTV-ℓ2) both the parameter
µ > 0 by discrepancy principle and the parameters αML =
(αi)i by maximum-likelihood (on a 32× 32 window), and in
Figure 2d the result obtained by solving (WTV-ℓ2) where the
parameters λCNN = (λi)i are estimated as described above
using a first CNN model learned only with Gaussian and Pois-
son noise. SSIM values w.r.t. to the ground-truth image are
reported for comparisons. Generally speaking, we observe
that compared to a scalar (i.e. global) parameter selection, al-
lowing a local adjustment of the TV smoothing favors better

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) Noisy image y (b) TV-ℓ2 with estimated λ
(0.767) (brute-force)

(c) (HWTV-ℓ2) with estimated
µ,αML (0.797) (σ2 required)

(d) WTV-ℓ2 with estimated λCNN

(0.788) (automatic)

Fig. 2: Figure 2a: noisy image y corrupted with Gaussian noise with zero mean and variance σ2 = 0.01. Figure 2b: TV-ℓ2
denoising result with λ ≡ λ = 0.07 optimizing SSIM by brute-force; Figure 2c: WTV-ℓ2 denoising result with space-variant
λML estimated as in [1]; Figure 2d: TV-ℓ2 denoising result with space-variant λCNN estimated by CNN learning. SSIM values
are reported in brackets.

detail preservation. In terms of restoration quality, we see that
the SSIM value of the denoised image in Figure 2c is slightly
better than the one obtained by our approach. However, we
highlight that while the approach in [1] relies on the prior
knowledge of the noise distribution and intensity (i.e. the val-
ues σ2 or its estimation), our approach does not require any
assumption on the type of noise nor on the noise variance
value as what is learned by the proposed CNN network is at
each pixel the product λi = αiσ

2.
To test the proposed estimation strategy on a real-world

problem where the noise distribution is unknown, we consider
Optical Coherence Tomography (OCT) human data (see Fig-
ure 3) 2 The noise observed in OCT measurements is hardly
Gaussian, as it is typically assumed to be signal-dependent
and/or speckle-type. Due to the local adaptivity of our es-
timation approach to both local image content and noise in-
tensity, we nonetheless considered models (HWTV-ℓ2) cou-
pled with the discrepancy- and Maximum-Likelihood-based
approach [1], and (WTV-ℓ2) with the proposed CNN-based
parameter estimation strategy to denoise it. We observe that
using the computed values λCNN allows for an improved im-
age smoothing and to the reduction of noise artifacts in the
background region.

(a) y (b) SB [6] (c) ML [1] (d) Proposed

Fig. 3: Denoising of an OCT image corrupted by speckle
noise: comparison between state-of-the art statistical-based
(SB) OCT-adapted denoising [6], solution of (HWTV-ℓ2)
with ML parameter estimation and proposed WTV-ℓ2 denois-
ing with estimated λCNN.

2Kermany, D., Zhang, Kang Goldbaum, M., Labeled Optical Co-
herence Tomography (OCT) and Chest X-Ray Images for Classification,
Mendeley Data, V2, 2018. Dataset: https://www.kaggle.com/
paultimothymooney/kermany2018.

5. CONCLUSIONS

We proposed a hybrid approach combining a model-based im-
age denoising model with a CNN strategy for hyperparameter
learning. As the selected weighted-TV model embeds prior
information on the desired solution, a small training set and a
light CNN architecture can be used. The use of CNN learn-
ing avoids the requirement of a prior noise model and inten-
sity for the hyperparameter estimation step. The proposed
approach is thus very versatile as it can be used for general
noise distributions. Compared to statistically-based state-of-
the-art approaches we obtain comparable, although slightly
lower, results in case of an additive Gaussian noise, with the
advantage of avoiding the prior knowledge of the noise vari-
ance. Besides, our CNN-based approach better generalizes to
non Gaussian noise as exemplified on real OCT images. A
natural generalization is to extend the proposed approach to
the case of deblurring, and estimate both the regularisation
hyperparameters and the convolution kernel at the same time.
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